

LOSS PREVENTION

Tides

Copyright © The Shipowners' Club, 2021

© British Crown Copyright and/or database rights. Reproduced by permission of the Controller of Her Majesty's Stationery Office and the UK Hydrographic Office (www.ukho.gov.uk).

The information and recommendations in this booklet are given in good faith and are meant to highlight best practices, good seamanship and common sense to reduce incidents that result in related claims. However, Members must take into consideration the guidance and regulatory requirements given by Flag states and other governing authorities when formulating policy in line with the contents of this publication.

NOT TO BE USED FOR NAVIGATION

Foreword

The Shipowners' Club provides P&I insurance for small and specialised vessels and, as such, the majority of our vessels trade in coastal waters. The fine technique of calculating tides is a very important aspect of voyage planning and is a crucial factor in determining whether passage through a particular waterway is safe or not.

Our analysis of the claims' causation has highlighted the fact that many grounding claims could have easily been avoided by simply following this basic technique.

The purpose of this booklet is to allow the seafarer to have a better understanding on how to perform the tidal calculations. We have included many solved examples as well as practice questions hoping that it will give a better understanding on the subject.

This booklet is one of three publications in a series and it is envisaged that together they will help eliminate some of the difficulties that befall those not so well versed in marine navigation.

We remain forever indebted to Captain H. Subramaniam for compiling this booklet series for us. Captain Subramaniam was a distinguished member of the nautical fraternity in a career spanning over 6 decades, including over 30 years of teaching experience. Apart from this series, he also authored eight textbooks on the operation of merchant ships which continue to be used by seafarers across the globe. It was his ability to put a subject across in a nutshell that made all his books easy to understand and helpful to those these are intended for.

Contents

Chapter 1	Tides: Theory and Definitions	2
Chapter 2	Tides: Calculation of Height of Tide at a Given Time	5
Chapter 3	Tides: Calculation of Time for a Given Height of Tide	28
Appendices Appendix 1	Inside cover of ATT Volume 1: The UK and Ireland (including European Channel Ports)	51
Appendix 2	Inside cover of ATT Volume 2: North Atlantic Ocean and Arctic Regions	52
Appendix 3	Inside cover of ATT Volume 3: Indian Ocean (including tidal stream tables)	53
Appendix 4	Inside cover of ATT Volume 4: South Pacific Ocean (including tidal stream tables)	54
Appendix 5	Inside cover of ATT Volume 5: South China Sea and Indonesia (including tidal stream tables)	55
Appendix 6	Inside cover of ATT Volume 6: North Pacific Ocean (including tidal stream tables)	56
Appendix 7	Inside cover of ATT Volume 8: South East Atlantic Ocean, West Africa and Mediterranean (including tidal stream tables)	57
Appendix 8	Tidal Curves: Dover	58
Appendix 9	Tidal Curves: Le Havre	59
Appendix 10	Tidal Curves: General	60
Appendix 11	Tidal Curves: Sheerness	61
Appendix 12	Tidal Curves: Lisbon	62

Chapter 1 Tides: Theory and Definitions

What are Tides?

Tides are the rise and fall of sea levels caused by the gravitational forces of the moon and the sun.

Some Tidal Terms

High Water and Low Water

When the water level is at its highest, it is called High Water (HW) and when it is lowest, Low Water (LW).

Tidal range

The difference in level between HW and LW is called the range of tide or tidal range, expressed in metres.

Flooding and ebbing

When the water level is rising, it is called flood tide or flooding, and when decreasing, ebb tide or ebbing.

Tidal interval

The interval between HW and LW is usually between six and seven hours. Hence most coastal areas experience two HWs and two LWs per day.

Spring tides

During a full moon and new moon, the sun, moon, and the earth are in line. Hence the gravitational forces of the sun and moon complement each other and the tidal range is very high. This phenomenon is called spring tide (figure 1). Spring tides occur every two weeks.

Figure 1

Neap tides

Midway between full moon and new moon, the moon and sun are 90° apart when seen from the earth. Their gravitational forces oppose each other and the tidal range is small. This phenomenon is called neap tide (figure 2). This occurs every two weeks.

Tidal stream

A tidal stream is the direction and rate of movement of the sea surface due to the tide, wind and shape of adjoining coast.

Chart datum (CD)

CD is the water level at which all the depths shown on the charts would be correct. This is the lowest level of water expected in that area and is usually the level at LAT (Lowest Astronomical Tide) or MLWS (Mean Low Water Springs).

Tide tables would take this level as zero and any height of tide calculated would be above this chart datum. If at a particular location the charted depth is 5m, and the height of tide was calculated to be 1.2m, the actual depth of water at that location, at that time, would be 6.2m.

In rare cases, the tide can fall below chart datum. It is then given a minus sign. If at a particular location the charted depth is 4m, and the height of tide was calculated to be -0.3m, the actual depth of water at that location, at that time, would be 3.7m.

Semi-diurnal nature

Diurnal means daily. Since, in nearly all ports in the world, one cycle of tide (one HW and one LW) occurs every 12 hours or so, tides are termed semi-diurnal.

Mean spring range

This is the height difference between Mean Low Water Springs (MLWS) and Mean High Water Springs (MHWS).

Mean neap range

This is the height difference between Mean Low Water Neaps (MLWN) and Mean High Water Neaps (MHWN).

Tidal information

The times and heights of HW and LW for each day of the year are given in Port tide tables, Regional tide tables, and Admiralty tide tables (ATT).

Port tide tables

Many ports publish their own tide tables annually.

Regional tide tables

Regional hydrographic offices may publish tide tables for the ports listed therein, annually.

Chapter 2

Tides: Calculation of Height of Tide at a Given Time

Admiralty tide tables are published annually in eight volumes:

Volume 1 – The UK and Ireland (including European Channel Ports)

- Volume 2 North Atlantic Ocean and Arctic Regions
- Volume 3 Indian Ocean (including tidal stream tables)
- Volume 4 South Pacific Ocean (including tidal stream tables)
- Volume 5 South China Sea and Indonesia (including tidal stream tables)
- Volume 6 North Pacific Ocean (including tidal stream tables)
- Volume 7 South West Atlantic Ocean and South America

Volume 8 – South East Atlantic Ocean, West Africa and Mediterranean (including tidal stream tables)

To make the ATT volumes less bulky, the ports are classed into standard ports and secondary ports.

Standard ports

Important ports in the area covered by each volume of ATT are designated as standard ports. The daily times and heights of HW and LW and details for calculating the times or heights in between are also provided.

Secondary ports

A large number of less important ports in the area covered by each volume of ATT are designated as secondary ports. Data for each secondary port is based on a standard port nearby such that the times and heights of HW and LW are obtained by applying a time and height difference to those at the standard port.

Such calculation is avoided by consulting the tide tables published by the port, or by the regional hydrographic office, wherein the daily times and heights of HW and LW are listed directly for each port.

To find height or time between tabulated values

The height of tide at a given time, or the time when a given height of tide occurs, can be obtained using tidal curves given in the ATT. The curves are of two types – port specific curves and general curves. Many standard ports in Europe have a page showing tidal curves for that specific port. For other ports, a set of general curves is provided.

Calculation using port-specific curves

Find the height of tide at Flushing in Europe at 1530 LT on 10 March of the year 20YY.

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 1: The UK and Ireland (including European Channel Ports).

Look at the Index to standard ports on the inside of the front cover (Appendix 1), locate Flushing, and open to that page (figure 3).

Step 2: Compute the bracketing range and tidal interval

Locate the bracketing tides on that day (figure 4). Required time: 1530 LT. Bracketing range = 4.4-0.3 = 4.1m. Tidal interval = 1735-1146 = 5h 49m.

Step 3: Draw sloping line near curves of the port

On the left side of the curves of that port locate the bracketed HW (4.3m) and LW (0.3m) heights and join them with a straight line as shown by a green line in figure 4.

Step 4: Draw vertical line at required time

Required time: 1530 LT. Bracketed HW time: 1735 LT. Time difference = 2h 5m before HW. Draw a vertical line at 2h 5m before HW to meet the curves, as shown by the red line in figure 4.

NETHERLANDS - VLISSINGEN (FLUSHING)

							1	AT 51	27 N		LONG	3'36	E								
TIME KOW									GHT5	QF W	TGH AN									YEAR	1992
Tini	JANUAS	Time.			(in-			Three	$\dot{\pi}$		Time		MARCI	Time	и.		Ť£==		APRI	TIME	-4
1 11/4 w 1000	4010	0404 1030 1050 2308	1 0 + 0 = 1		046 659 910 909	10111	16 50	0000 1218 1846	040		0015 0030 1248 1934	1044	16	0605 1206 1832	0 4 5	11	0101 0720 1330 1926	40.3	TH	0083 0728 1510 1945	8 0.0 1 0.7 0.7
2 0008 0925 17# 1225 1645		9920 \$117 1755	140.0	4 0 50 1	125 745 350 045	SALE .	17	0716 1942 1945	40.40	2	0108 0728 1321 1025	49.40	17	1025 1025	30.50	2	0171 0758 1349 1959	4 0 4 0 4 0 4 0 4		0134 0812 1356 2020	10000
3 0000 + 1320 1925	0.110	0000 0030 1215 1856	8 X 8 8 8 8 8 8 9 5		415	1441	10	0134 0908 1/56	40.4D	3	0138 0766 1355 1958	4045	1.18	0316 0749 1335 2006	40.40	3	0150 0825 1417 2035	4 8 0 1 0 7 0 3	54	0316 0863 1434 2106	40.40
4 0148 0768 58 1354 • 2006	4119 41 50	0102 0726 1325 1948	4 5 11 4 1 2 4	40	1233 1849 1447 1255	41010	19	0216 0866 1436 2106	10102	- 16	0208 0825 1423 2030	4040	TH	0156 0836 1416 2047	A.B.1.9.2	4	0230 0902 1449 2150	4040	19	0256 0930 1619 2145	10404
5 0770 50 0929 50 1438 8038	20	014% (M20) 140% 20%	4.7 8.1 8.8 8.3	50	901 926 517 128	10.000	20	0259 0M39 1616 2146		5	0205 0958 1448 2102	4040	- F	0236 0610 1465 2128	4.1 -0.1 4 11 10 11		0305 0935 1822 2145	A.8 0.1 4.7 0.7		0336 1008 1801 2220	4.8
6 0052 0005 0005 0005 0005 0005 0005 0005	4421 44 TU	9236 0908 1,453 2123	4 0 0 0 6 0 0 0 7 0 0	0	000 640 150	1040	21	0341 1010 1005 2239	10000	6	0302 0032 1817 2130	4040		0417 0455 1640 2208	日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	6	0006 1012 1555 2222	4.8	1.71	0420 1045 1636 2302	10404
7 0326 0948 Tu 1539 0145		0318 0956 1540 2206	4 8 8 4 8 1 8 1 8 1	1	402 032 618 236	10 10 C	22	0421 1106 1649 2309	4040	7	0306 1005 1549 2230	4 7 0 1 4 7 0 8	22	0358 1038 1623 3248	0.0.0		0413 1048 1630 2300	9.8 0.2 0.0		0458 1110 1718 2340	+6+6
8 0358 1019 1100 2225	1123	0408 3046 3926 2261	0.00 m	0	106 649 306	11111	23	0508 1142 1738 2353	10155	8	0493 1038 1620 2239	4.7	N	6443 1116 1705 2226	4 3 3 4 4	8	D452 1126 1717 2346	4040	23	0546 1200 1805	40.0
9 0428 1056 1# 1645 2255		0450 1128 1714 2336	0.0 0.5	9 1	136 136 721 335	1010	24	Quinu 1022 1025	- 0.4	9	1111 1655 7319	40.0		17.60	4.2	Th	0337 1212 1800	8.5 10 4 14 1	24	0036 0636 1256 1856	
10 0502 F 1130 2325	1 25	0534 19 00 1907	10.1	10	537 211 768	1044	25	0034 0040 1305 1915	0.000	πu	0012 1140 1735 2356	0.5	25	0006 0609 1230 4935	04078	10	0035 0635 1304 1926	0.40	54	0146 0140 1416 2000	0.040
11 0638 1154 54 1155		0010 0020 1255 1001	10.00	72.4	036 617 250 848	1444	26	0745 1410 2014	0000	11	065W 122% 1622	404	26	0055 0706 1850 1936	10000	11	D145 D896	0.6 4.0 0.6 0.7	50	0255 0906 1526 2124	5-0-0
12 0006 50 1295 1895	0.0 27 4.0 0 4.0 0	0110 0725 1350 1859	1,114,0	12 0	05/3. 710 341 100/7	0400	27	0265 0916 1624 2206	12.14	12	CCA0 CCA0 1320 1330	0407		0215 0826 1464 2004	0.0110	12 su	0315 0830 1555 2205	0.0	t : M	0385 1020 1030 2250	0000
13 0945 0855 1376 1935	4:28	122 ED 11255 11456 21126	0.000	TH 6	230 83% 50%	10.0		0415 1046 1665 2329	1.1	13	0349 0810 1440 2100	0404		0336 1006 1004 2246	0.011	13	0440 3048 1726 2018	0.5		0506 1122 1125 2343	110.0
14 0140 10 0000 10 1420 2051	1 29	0000 0000 1010 0230	1207 87	1111	000 000 020	0.000	29	0435	0.8 3.8	14	3	0.8	29	0460	1	14	0550 1145 1818	0.3	29	0006	0.5
15 0244 0021 1541 1940	1 0 30 0 0 0	(1900 1116 1724 2046	10498	15	7:61	8.0.4		1	0	1	05 11	13 46		4.6 0.3		15	0000 0845 1295 1992	40.40	11	0500 0400 0401 0501 0301	
		0010 1215 1830	0'.0 # 0 0.0					7	ΓU	l	17 23	35 56		4.4 0.5	-						

Figure 4

Step 5: Draw horizontal line

Note the points, marked as A and B in blue colour in figure 4, where the 2h 5m vertical red line meets the Mean Spring Range curve and the Mean Neap Range curve.

The firm curve is for mean spring range of	4.4m
The dotted curve is for mean neap range of	3.1m
Bracketed range from step 2	4.1m

Interpolate visually on the graph for 4.1m range between point A (for 4.4m range) and point B (for 3.1m range) and draw a horizontal line, as shown in red colour in figure 4, to meet the sloping green line.

From the point of intersection, draw a vertical line, as shown in red colour in figure 4, and obtain the height of tide above chart datum.

Step 6: State your answer

The height of tide at Flushing in Europe at 1530 LT on 10 March 20YY = **2.3m above chart datum**.

Figure 5

Calculation using general curves

Find height of tide at Singapore at 2300 LT on 6 April 20YY.

Step 1: Identify the appropriate ATT and open page of the given port

In this case, it is ATT for the year 20YY Volume 5: South China Sea and Indonesia (including tidal stream tables). Look at the index to standard ports on the inside of the front cover (Appendix 5), locate Singapore, and open to that page.

Note 1: The extracted values are given in step 2.

Note 2: There are no specific curves given for Singapore. You have to use a common set of curves given in the beginning of the tide tables which are suitable for tidal intervals between 5 hours and 7 hours. These are reproduced in Appendix 10.

Step 2: Compute the bracketing range and interval

Required time: 6 April 2300 LT. Bracketing tides are:

Date	Time (LT)	Height (m)
6 April	1916	0.3
7 April	0130	2.6

Bracketing range 2.3m and tidal interval 6h 14m.

Step 3: Draw sloping line near the curves

On the left side of the general curves locate the bracketed HW and LW heights and join them with a straight line shown by a green line in the graph, as shown in figure 5.

Step 4: Draw vertical line at required time

Required time: 6 April 2300 LT. Bracketed HW time: 7 April 0130 LT.

Time difference = 2h 30m before HW. Draw a vertical line at 2h 30m before HW to meet the curves, as shown by the red line in figure 5.

Step 5: Draw horizontal line

There are three curves: -5, -6 and -7 hours. Bracketing tidal interval is 6h 14m before HW.

Note the points A and B in figure 5 where the 2h30m vertical red line meets the 6h curve and the 7h curve.

Interpolate visually on the graph for 6h 14m between the points A and B and draw a horizontal line, as shown in figure 5, to meet the sloping green line.

From the point of intersection, draw a vertical line, as shown in red colour in figure 5, and obtain the height of tide.

Step 6: State your answer

Height of tide at Singapore at 2300 LT on 6 April 20YY = **1.7m above chart datum**.

Test yourself

Computing height of tide

Answers are given after each question. Worked solutions in detail are given on subsequent pages.

Question 1

Find height of tide at Dover (UK) at 1130 UT on 28 February of the year 20YY, using the extracts given below and the curve in Appendix 8:

Date	Time (UT)	Height (m)
28 February 20YY	0731	5.0
28 February 20YY	1437	2.3

Answer: 3.6m above chart datum.

Question 2

Find height of tide at Le Havre (France) at 0900 LT on 22 January 20YY, using the extracts given below and the curve in Appendix 9:

Date	Time (LT)	Height (m)
22 January 20YY	0726	0.9
22 January 20YY	1226	8.2

Answer: 5.0m above chart datum.

Question 3

Find height of tide at Tianjin Xingang (China) at 1400 LT on 17 April 20YY, using the extracts given below and the curves in Appendix 10:

Date	Time (LT)	Height (m)
17 April 20YY	1013	0.5
17 April 20YY	1606	4.0

Answer: 3.0m above chart datum.

Question 4

Find the height of tide at Cape Town (South Africa) at 1100 LT on 16 April 20YY using the extracts given below and the curves in Appendix 10:

Date	Time (LT)	Height (m)
16 April 20YY	0850	0.2
16 April 20YY	1458	1.8

Answer: 0.6m above chart datum.

Question 5

Find height of tide at Bhavnagar (India) at 0300 LT on 20 March 20YY using the extracts given below and the curves in Appendix 10:

Date	Time (LT)	Height (m)
20 March 20YY	0042	1.2
20 March 20YY	0548	10.4

Answer: 5.0m above chart datum.

Solutions on computing height of tide

Question 1

Find height of tide at Dover (UK) at 1130 UT on 28 February of the year 20YY, using the extracts given below and the curves in Appendix 8:

Date	Time (UT)	Height (m)
28 February 20YY	0731	5.0
28 February 20YY	1437	2.3

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 1: The UK and Ireland (including European Channel Ports).

Look at the Index to Standard Ports on the inside of the front cover (see Appendix 1), locate Dover (UK), and open to that page.

Step 2: Compute the bracketing range and tidal interval

Required time: 1130 UT. Bracketing tides:

Date	Time (UT)	Height (m)
28 February 20YY	0731	5.0
28 February 20YY	1437	2.3

Bracketing range = 5.0–2.3 = 2.7m. Bracketing tidal interval = 1437–0731 = 07h 06m.

Step 3: Draw sloping line near the curves of the port

On the left side of the curves of that port locate the bracketed HW (5.0m) and LW (2.3m) heights and join them with a straight line as shown by a green line in figure 6.

Step 4: Draw vertical line at required time

Required time: 1130 UT. Bracketed HW time: 0731 UT. Time difference = 3h 59m after HW. Draw a vertical line at 3h 59m after HW to meet the curves, as shown by the red line in figure 6.

Step 5: Draw horizontal line

Important Note: The point where the 3h 59m vertical red line meets the tidal curve. In this case the Mean Spring Range curve and the mean Neap Range curve are the same. From this point, draw a horizontal line, as shown in red colour in figure 6, to meet the sloping green line.

From the point of intersection, draw a vertical line, as shown in red colour in figure 6, and obtain the height of tide above chart datum.

Step 6: State your answer

The height of tide at Dover (UK) at 1130 UT on 28 Feb 20YY = **3.4m above chart datum**.

Figure 6

Question 2

Find the height of the tide at Le Havre (France) at 0900 LT on 22 January 20YY, using the extracts given below and the curves in Appendix 9:

Date	Time (LT)	Height (m)
22 January 20YY	0726	0.9
22 January 20YY	1226	8.2

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 2: North Atlantic Ocean and Arctic Regions, Mediterranean Sea and Atlantic Ocean. Look at the Index to Standard ports on the inside of the front cover (Appendix 2), locate Le Havre, and open to that page.

Step 2: Compute the bracketing range and tidal interval

Required time: 0900. Bracketing tides:

Date	Time (LT)	Height (m)
22 January 20YY	0726	0.9
22 January 20YY	1226	8.2

Bracketing range = 8.2–0.9 = 7.3m. Tidal interval = 1226–0726 = 5h 00m.

Step 3: Draw sloping line on curves of the port

On the left side of the curves of that port locate the bracketed HW (8.2m) and LW (0.9m) heights and join them with a straight line as shown by a green line in figure 7.

Step 4: Draw vertical line at required time

Required time: 0900 LT. Bracketed HW time: 1226 LT.

Time difference = 3h 26m before HW. Draw a vertical line at 3h 26m before HW to meet the curves, as shown by the red line in figure 7.

Step 5: Draw horizontal line

The firm curve is for mean spring range of	6.7m
The dotted curve is for mean neap range of	3.6m
Bracketed range from step 2	7.3m

Note: Bracketed range is 7.3m which is more than the mean spring range of 6.7m

Extrapolation is not allowed. Hence use only the mean spring curve in this case.

From the point where the 3h 26m vertical red line meets the mean spring range curve of 6.7m, draw a horizontal line, as shown in red colour to meet the sloping green range as shown in figure 7.

From the point of intersection, draw a vertical line, as shown in red colour in the graph, and obtain the height of tide.

Step 6: State your answer

The height of tide at Le Havre (France) at 0900 LT on 22 January in the year 20YY = **5.0m above chart datum**.

LE HAVRE MEAN SPRING AND NEAP CURVES Springs occur 2 days after New and Full Moon.

Figure 7

Question 3

Find height of tide at Tianjin Xingang (China) at 1400 LT on 17 April 20YY, using the extracts given below and the curves in Appendix 10:

Date	Time (LT)	Height (m)
17 April 20YY	1013	0.5
17 April 20YY	1606	4.0

Step 1: Identify the appropriate ATT and open to the page of given port.

In this case, it is ATT for the year 20YY Volume 6: North Pacific Ocean (including tidal stream tables). Look at the index to standard ports on the inside of the front cover (Appendix 6), locate Tianjin Xingang, and open to that page.

Note: There are no specific curves given for Tianjin Xingang. You have to use a common set of curves given in the beginning of the tide tables which are suitable for tidal intervals between 5 hours and 7 hours.

Step 2: Compute the bracketing range and interval

Required time: 17 April, 1400 LT. Bracketing tides:

Date	Time (LT)	Height (m)
17 April 20YY	1013	0.5
17 April 20YY	1606	4.0

Bracketing range 3.5m and tidal interval 5h 53m.

Step 3: Draw sloping line on curves

On the left side of the general curves locate the bracketed HW and LW heights and join them with a straight line as shown by a green line in figure 8.

Step 4: Draw vertical line at required time

Required time: 17 April 20YY, 1400 LT. Bracketed HW time: 1606 LT.

Time difference = 2h 06m before HW. Draw a vertical line at 2h 06 before HW to meet the curves, as shown by the red line in figure 8.

Step 5: Draw horizontal line

There are three curves: -5, -6 and -7 hours. Bracketing tidal interval is 5h 53m.

Note the points where the 2h 06m vertical red line meets the 5h curve and the 6h curve.

Interpolate visually on the graph for 5h 53m between the 5h and 6h curves and draw a horizontal line, as shown in figure 8, to meet the sloping green line.

From the point of intersection, draw a vertical line, as shown in red colour in figure 8, and obtain the height of tide.

Step 6: State your answer

Height of tide at Tianjin Xingang (China) at 1400 LT on 17 April 20YY = **3.0m above chart datum**.

Figure 8

Question 4

Find the height of tide at Cape Town (South Africa) at 1100 LT on 16 April 20YY using the following extracts and the curves in Appendix 10:

Date	Time (LT)	Height (m)
16 April 20YY	0850	0.2
16 April 20YY	1458	1.8

Important note: There are no specific curves given for Cape Town. You have to use a common set of curves given in the beginning of the tide tables which are suitable for tidal intervals between 5 hours and 7 hours.

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 8: South East Atlantic Ocean, West Africa and Mediterranean (including tidal stream tables).

Look at the index to standard ports on the inside of the front cover (Appendix 7), locate Cape Town (South Africa), and open to that page.

Step 2: Compute the bracketing range and interval

Required time: 16 April 1100 LT. Bracketing tides:

Date	Time (LT)	Height (m)
16 April 20YY	0850	0.2
16 April 20YY	1458	1.8

Bracketing range 1.6m and tidal interval 6h 08m.

Step 3: Draw sloping line on curves

On the left side of the general curves locate the bracketed HW and LW heights and join them with a straight line as shown by a green line in figure 9.

Step 4: Draw vertical line at required time

Required time: 1100 LT. Bracketed HW time: 1458 LT.

Time difference = 3h 58m before HW. Draw a vertical line at 3h 58m before HW to meet the curves, as shown by the red line in figure 9.

Step 5: Draw horizontal line

There are three curves: -5, -6 and -7 hours. Bracketing tidal interval is 6h 8m before HW. Note the points where the 3h 58m vertical red line meets the 6h curve and the 7h curve.

Interpolate visually on the graph for 6h 8m between the 6h and 7h curves and draw a horizontal line, as shown in red colour in figure 9, to meet the sloping green line.

From the point of intersection, draw a vertical line, as shown in red colour in figure 9, and obtain the height of tide.

Step 6: State your answer

The height of tide at Cape Town (South Africa) at 1100 LT on 16 Apr 20YY = **0.6m above chart datum**.

Figure 9

Question 5

Find height of tide at Bhavnagar (India) at 0300 LT on 20 March 20YY using the extracts given below and the curves in Appendix 3:

Date	Time (LT)	Height (m)
20 March 20YY	0042	1.2
20 March 20YY	0548	10.4

Important note: There are no specific curves given for Bhavnagar. You have to use a common set of curves given in the beginning of the Tide Tables which are suitable for tidal intervals between 5 hours and 7 hours.

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 3: Indian Ocean (including Tidal stream tables). Look at the Index to Standard Ports on the inside of the front cover (Appendix 3), locate Bhavnagar, and open to that page.

Step 2: Compute the bracketing range and interval

Required time: 20 March, 0300 LT. Bracketing tides:

Date	Time (LT)	Height (m)
20 March 20YY	0042	1.2
20 March 20YY	0548	10.4

Bracketing range 9.2m and tidal interval 5h 06m.

Step 3: Draw sloping line on curves

On the left side of the general curves locate the bracketed HW and LW heights and join them with a straight line as shown by a green line in figure 10.

Step 4: Draw vertical line at required time

Required time: 0300 LT. Bracketed HW time: 0548 LT. Time difference = 2h 48m before HW. Draw a vertical line at 2h 48m before HW to meet the curves, as shown by the red line in figure 10.

Step 5: Draw horizontal line

There are three curves: -5, -6 and -7 hours. Bracketing tidal interval is 2h 48m before HW. Note the points where the 2h 48m vertical red line meets the 5h curve and the 6h curve.

Interpolate visually on the graph for 5h 6m between the 5h and 6h curves and draw a horizontal line, as shown in figure 10, to meet the sloping green line.

From the point of intersection, draw a vertical line, as shown in red colour in figure 10, and obtain the height of tide.

Step 6: State your answer

Height of tide at Bhavnagar (India) at 0300 LT on 20 March 20YY = **5.0m above chart datum**.

Figure 10

Depth of water = Charted depth + height of tide above CD Depth of water = Draft of ship + under keel clearance

Calculation using port-specific curves

Find the earliest time on the afternoon of 9 January 20YY, at Flushing in Europe, when your ship with 5.5m draft aft can cross a bar marked 3.0m on the chart with UKC (Under Keel Clearance) of 1.0m.

If your ship is delayed by a couple of hours, how late can you cross the bar?

Note: 'Earliest time' indicates rising tide - there is insufficient height of tide 15 minutes earlier but it has now risen to level needed. Similarly, 'latest time' would indicate falling tide.

Chapter 3

Tides: Calculation of Time for a Given Height of Tide

Preliminary calculation

DRAFT	5.5m
UKC	1.0m
Required depth	6.5m
Charted depth	3.0m
Required height of tide	3.5m

Step 1: Identify the appropriate ATT and open to the page of the given port In this case, it is ATT for the year 20YY Volume 1: The UK and Ireland (including European Channel Ports). Look at the index to standard ports on the inside of the front cover (Appendix 1), locate Flushing, and open to that page (figure 12).

Step 2: Compute the bracketing range and tidal interval

Locate the bracketing tides on that day (figure 12). Required: Afternoon, rising tide, height of 3.5m.

Date	Time (LT)	Height (m)
9 January 20YY	1056	0.3
9 January 20YY	1645	4.5

Bracketing tides: Range 4.2m; tidal interval 5h 49m.

Step 3: Draw sloping line on curves of the port

On the left side of the curves of that port locate the bracketed heights – HW 4.5m and LW 0.3m and join them with a straight line as shown by a green line in figure 13.

Step 4: Draw vertical and horizontal lines

Required height of tide: 3.5m. Draw a vertical line at 3.5m to meet the sloping green line. From the point of intersection, draw a horizontal line, as shown in red colour in figure 13, across the curves for rising tide.

The firm curve is for mean spring range of	4.4m
The dotted curve is for mean neap range of	3.1m
Bracketed range from step 2	4.2m

Note the points where the horizontal red line meets the mean spring range curve of 4.4m and the mean neap range curve of 3.1m as shown in blue colour in figure 13.

Interpolate visually in figure 13 for 4.2m range between the curves for 4.4m and 3.1m and draw a vertical line, as shown in red colour in figure 13. Read off the interval before HW and compute the required time which is 1h 20m before HW in this case. Required time = 1645 - 1h 20m = 1525 LT.

Step 6: State your answer

The earliest time on the afternoon of 9 January 20YY, at Flushing in Europe, when your ship drawing 5.5m at the after end can cross a bar marked 3.0m with UKC (Under Keel Clearance) of 1.5m is 1525 LT.

If your ship is delayed by a couple of hours:

Extend the horizontal line in step 4 to meet the falling tide. From the point of intersection, draw a vertical line, as shown by blue dotted lines in figure 13, and read off the time interval. In this case it is 02h 10m after HW. Latest time = 1645 + 2h 10m = 1855 LT.

Answer: If your ship is delayed by a couple of hours, you can still cross the bar up to 1855 LT.

Figure 13

Calculation of time using general curves

Find the latest time on the afternoon of 19 January 20YY, at Boston (USA east coast), when your ship drawing 3.5m at the after end can cross a bar marked 2.0m on the chart with UKC (Under Keel Clearance) of 1.0m, using the following extracts and the curves given in appendix 7.

Date	Time	Height (m)
19 January 20YY	1009	3.6m
19 January 20YY	1636	-0.5m

Note: 'Latest time' indicates falling tide - there is sufficient height of tide at the calculated time, but after 15 minutes it is too shallow. So tide is falling. Similarly, 'earliest time' would indicate rising tide.

Preliminary calculation

DRAFT	3.5m
UKC	1.0m
Required depth	4.5m
Charted depth	2.0m
Required height of tide	2.5m

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 2: North Atlantic Ocean and Arctic Regions. Look at the index to standard ports on the inside of the front cover (Appendix 2), locate Boston, and open to that page. For convenience, the extract for that day is given in the question and is used in step 2.

Note: There are no specific curves given for Boston. You have to use a common set of curves given in the beginning of the Tide Tables which are suitable for tidal intervals between 5 hours and 7 hours. These are reproduced in Appendix 10.

Step 2: From the bracketing tides on that day, obtain tidal interval and range Required: Afternoon, falling tide, height of 2.5m.

Bracketing tides:

Date	Time	Height (m)
19 January 20YY	1009	3.6m
19 January 20YY	1636	-0.5m

Tidal interval is 6h 27m and range is 4.1m

Note: The minus sign indicates that the tide is below chart datum.

Step 3: Draw sloping line on general curves

On the left side of the curves, locate the bracketed HW and LW heights and join them with a straight line as shown by a green line in figure 14.

Step 4: Draw vertical and horizontal lines

Required height of tide: 2.5m. Draw a vertical line at 2.5m to meet the sloping green line. From the point of intersection, draw a horizontal line, as shown in red colour in figure 14, across the curves for falling tide.

Step 5: Draw vertical line at appropriate curve and compute answer

Bracketed tidal interval = 6h 27m. Note the points where the horizontal red line meets the 6h and the 7h curves as shown in blue colour in figure 14.

Interpolate visually in figure 14 for 6h 27m between the curves for 6h and 7h and draw a vertical line, as shown in red colour in figure 14. Read off the interval after HW and compute the required time which is 2h 10m after HW in this case. Required time = 1009 + 2h 20m = 1229 LT.

Step 6: State your answer

The latest time on the afternoon of 19 January 20YY, at Boston (USA east coast), when your ship drawing 3.5m at the after end can cross a bar marked 2.0m on the chart with UKC of 1.0m is **1229 LT**.

Figure 14

Test yourself

Computing required time

Answers are given after each question. Worked solutions in detail are given in subsequent pages.

Question 1

On the very early hours of 3 April 20YY, at Sheerness (England), find the latest time when your ship drawing 5.0m can sail over a bar marked 2.5m on the chart with UKC of 0.5m, using the curve in Appendix 11 and the tidal extracts below:

Date	Time (LT)	Height (m)
3 April 20YY	0027	5.6m
3 April 20YY	0645	0.6m

If the ship is ready to sail earlier by a few hours, what is the earliest time that it can sail?

Answer: Latest 0312 LT on 3 April. Earliest 2107 LT on 2 April.

Question 2

On the afternoon of 4 March 20YY, at Lisbon (Portugal), find the latest time when your ship drawing 4.5m can sail over a bar marked 3.0m on the chart with UKC of 1.5m, using the curve in Appendix 12 and the tidal extracts below:

Date	Time (LT)	Height (m)
4 March 20YY	1524	3.6m
4 March 20YY	2051	0.7m

Answer: 1704 LT.

Question 3

Your ship expects to complete loading at 1800 LT on 6 January 20YY, at Kuwait (Mina Al Ahmadi) with draft aft of 6.5m. Find the earliest time you can sail out with UKC of 1.0m over a bar marked 5.0m on the chart, using the curves in Appendix 10 and the tidal extracts below:

Date	Time (LT)	Height (m)
6 January 20YY	1820	1.7m
7 January 20YY	0005	2.9m

Answer: 2235 LT on 6 January.

Your ship expects to complete loading at 0500 LT on 17 February 20YY, at Twin Island, Torres Strait, (Australia) with draft of 5.5m. Find the earliest time you can sail out with UKC of 1.5m over a bar marked 4.0m on the chart, using the curves in Appendix 10 given the tidal extracts below:

Date	Time (LT)	Height (m)
17 February 20YY	0535	0.2m
17 February 20YY	1138	3.7m

Answer: 0958 LT.

Question 5

Your ship expects to arrive at Elephant Point, Rangoon River (Myanmar) at 0200 LT on 16 April 20YY, with draft of 5.0m aft. Find the latest time you can pass over a bar with UKC of 1.0m over a bar marked 2.0m on the chart, using the curves in Appendix 10 given the tidal extracts below:

Date	Time (LT)	Height (m)
16 April 20YY	0246	6.0m
16 April 20YY	0912	0.9m

Answer: 1202 LT.

Detailed solutions on computation of time

Question 1

On the very early hours of 3 April 20YY, at Sheerness (England), find the latest time when your ship, drawing 5.0m, can sail over a bar marked 2.5m on the chart with UKC of 0.5m, using the curve in Appendix 11 and the tidal extracts below:

Date	Time (LT)	Height (m)
3 April 20YY	0027	5.6m
3 April 20YY	0645	0.6m

If the ship is ready to sail a few hours earlier, what is the earliest time that it can sail?

Note: 'Latest time' indicates falling tide and earliest, rising tide.

Preliminary calculation

DRAFT	5.0m
UKC	0.5m
Required depth	5.5m
Charted depth	2.5m
Required height of tide	3.0m

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 1: The UK and Ireland (including European Channel Ports).

Look at the index to standard ports on the inside of the front cover (Appendix 1), locate Sheerness, and open to that page. For convenience, data from that page is given in the question and used in step 2.

Step 2: Extract the bracketing tides and compute the range and tidal interval Required: very early morning, falling tide, height of 3.0m. Bracketing tides:

Date	Time (LT)	Height (m)
3 April 20YY	0027	5.6m
3 April 20YY	0645	0.6m

Bracketed tidal interval 6h 18m, range 5.0m.

Step 3: Draw a sloping line on the curves of the port

On the left side of the curves of that port locate the bracketed HW and LW heights and join them with a straight line as shown by the green line in figure 15.

Step 4: Draw vertical and horizontal lines

Required height of tide: 3.0m. Draw a vertical line at 3.0m to meet the sloping green line. From the point of intersection, draw a horizontal line, as shown in red colour in figure 15, across the curves for **falling** tide.

Step 5: Draw a vertical line at the appropriate curve and compute the time

The firm curve is for mean spring range of	5.1m
The dotted curve is for mean neap range of	3.3m
Bracketed range from step 2	5.0m

Note the points where the horizontal red line meets the mean spring range curve and the mean neap range curve. In this case there is only one curve on the falling tide.

At the point of intersection, draw a vertical line, as shown by the red colour in figure 15. Read off the interval after HW and compute the required time which is 2h 45m after HW in this case. Required time = 0027 + 2h 45m = 0312 LT.

Step 6: State your answer

On the very early hours of 3 April 20YY, at Sheerness (England), the latest time when your ship drawing 5.0m can sail over a bar marked 2.5m on the chart with UKC of 0.5m is 0312 LT.

If ready to sail a few hours earlier:

From the point where the horizontal line in step 5 crosses the rising tide, draw a vertical line as shown by the blue dotted line in figure 5, and read off the interval before HW. In this case it is 03h 20m before HW.

The ship can sail as early as: 0027 - 0320 = 2107 on 2 April.

Answer: Earliest time 2107 LT on 2 April.

Figure 15

On the afternoon of 4 March 20YY, at Lisbon (Portugal), find the latest time when your ship drawing 4.5m can sail over a bar marked 3.0m on the chart with UKC of 1.5m using the curve in Appendix 12 and the tidal extracts below:

Date	Time (LT)	Height (m)
4 March 20YY	1524	3.6m
4 March 20YY	2051	0.7m

Note: 'Latest time' indicates falling tide.

Preliminary calculation

DRAFT	4.5m
UKC	1.5m
Required depth	6.0m
Charted depth	3.0m
Required height of tide	3.0m

Step 1: I dentify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 8: South East Atlantic Ocean, West Africa and Mediterranean (including tidal stream tables). Look at the index to standard ports on the inside of the front cover (Appendix 7), locate Lisbon, and open to that page. The data extracted from that page is given in the question and is used in step 2.

Step 2: Extract the bracketing tides and compute the range and tidal interval *Required*: Afternoon, falling tide, height of 3.0m. Bracketing tides:

Date	Time (LT)	Height (m)
4 March 20YY	1524	3.6m
4 March 20YY	2051	0.7m

Extracted tidal interval 5h 27m; range 2.9m.

Step 3: Draw a sloping line on the curves of the port

On the left side of the curves of that port locate the bracketed HW and LW heights and join them with a straight line as shown by the green line in figure 16.

Step 4: Draw vertical and horizontal lines

Required height of tide: 3.0m. Draw a vertical line at 3.0m to meet the sloping green line. From the point of intersection, draw a horizontal line, as shown by the red colour in figure 16, across the curves for falling tide.

Step 5: Draw a vertical line at the appropriate curve and compute time

The firm curve is for mean spring range of	3.3m
The dotted curve is for mean neap range of	1.6m
Bracketed range from step 2	2.9m

Step 6: State your answer

On the afternoon of 4 March 20YY, at Lisbon (Portugal), the latest time a ship drawing 4.5m can sail over a bar marked 3.0m on the chart with UKC of 1.5m is **1704 LT**.

LISBON MEAN SPRING AND NEAP CURVES Springs occur 1 day after New and Full Moon.

Figure 16

Your ship expects to complete loading at 1800 LT on 6 January 20YY, at Kuwait (Mina Al Ahmadi) with draft aft of 6.5m. Find the earliest time you can sail out with UKC of 1.0m over a bar marked 5.0m on the chart, using the curves in Appendix 10 given the tidal extracts below:

Date	Time (LT)	Height (m)
6 January 20YY	1820	1.7m
7 January 20YY	0005	2.9m

Required: Rising tide after 1800LT; height of 2.5m. Bracketing tides:

Note: 'Earliest time' indicates rising tide.

Preliminary calculation

DRAFT	6.5m
UKC	1.0m
Required depth	7.5m
Charted depth	5.0m
Required height of tide	2.5m

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 3: Indian Ocean (including Tidal stream tables).

Look at the Index to Standard Ports on the inside of the front cover (Appendix 3), locate Mina Al Ahmadi, and open to that page. For convenience, the extract for that day is given in the question and is used in step 2.

Note: There are no specific curves given for Mina Al Ahmadi. You have to use a common set of curves given in the beginning of the tides tables which are suitable for tidal intervals between 5 hours and 7 hours. These are reproduced in Appendix 10.

Step 2: From the bracketing tides on that day, obtain tidal interval and range. Required: Rising tide after 1800LT; height of 2.5m. Bracketing tides:

Date	Time (LT)	Height (m)
6 January 20YY	1820	1.7m
7 January 20YY	0005	2.9m

Tidal interval 5h 45m; range 1.2m.

Step 3: Draw a sloping line on the general curves

On the left side of the curves, locate the bracketed HW and LW heights and join them with a straight line as shown by the green line in figure 17.

Step 4: Draw vertical and horizontal lines

Required height of tide: 2.5m. Draw a vertical line at 2.5m to meet the sloping green line. From the point of intersection, draw a horizontal line, as shown by the red colour in figure 17, across the curves for rising tide.

Step 5: Draw vertical line at appropriate curve and compute time

Note the points where the horizontal red line meets the 5h curve and the 6h curve. Interpolate visually on the horizontal red line for the required tidal interval 5h 45m (from step 2), and draw a vertical line, as shown by the red colour figure 17. Read off the interval, which is 1h 30m before HW in this case, and compute the required time.

Required time = 0005–2h 00m = 2205 LT on 6 January.

Step 6: State your answer

On 6 January 20YY, at Kuwait (Mina Al Ahmadi) with draft aft of 6.5m, the earliest time after 1800LT the ship can sail out with UKC of 1.0m, over a bar marked 5.0m, on the chart is **2205LT**.

FOR FINDING THE HEIGHT OF THE TIDE AT

Figure 17

Your ship expects to complete loading at 0500 LT on 17 February 1992, at Twin Island, Torres Strait, (Australia) with draft of 5.5m. Find the earliest time you can sail out with UKC of 1.5m over a bar marked 4.0m on the chart, using the curves in Appendix 7 given the tidal extracts below:

Date	Time (LT)	Height (m)
17 February 20YY	0535	0.2m
17 February 20YY	1138	3.7m

Note: 'Earliest time' indicates rising tide.

Preliminary calculation

DRAFT	5.5m
UKC	1.5m
Required depth	7.0m
Charted depth	4.0m
Required height of tide	3.0m

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 4: South Pacific Ocean (including tidal stream tables). Look at the index to standard ports on the inside of the front cover (Appendix 4), locate Twin Island, Torres Strait, (Australia), and open to that page. For convenience, the extract for that day is given in the question and is used in step 2.

Note: There are no specific curves given for Twin Island. You have to use a common set of curves given in the beginning of the tide tables which are suitable for tidal intervals between 5 hours and 7 hours. These are reproduced in Appendix 10.

Step 2: From the bracketing tides on that day, obtain tidal interval and range Required: Rising tide after 0500LT; height of 3.0m. Bracketing tides:

Date	Time (LT)	Height (m)
17 February 20YY	0535	0.2m
17 February 20YY	1138	3.7m

Tidal interval 6h 03m; range 3.5m.

Step 3: Draw a sloping line on the general curves

On the left side of the curves, locate the bracketed HW and LW heights and join them with a straight line as shown by a green line in figure 18.

Step 4: Draw vertical and horizontal lines

Required height of tide: 3.0m. Draw a vertical line at 3.0m to meet the sloping green line. From the point of intersection, draw a horizontal line, as shown by the red colour in figure 18, across the curves for rising tide.

Step 5: Draw a vertical line at the appropriate curve and compute time

Note the points where the horizontal red line meets the 6h curve and the 7h curve. Interpolate visually on the horizontal red line for the required tidal interval 6h 03m (from step 2), and draw a vertical line, as shown in red colour in figure 18. Read off the interval, which is 1h 40m before HW in this case, and compute the required time.

Required time = 1138 - 1h 40m = 0958 LT.

Step 6: State your answer

On 17 February 20YY, at Twin Island, Torres Strait, (Australia) with draft aft of 5.5m, the earliest time ship can sail out with UKC of 1.5m, over a bar marked 4.0m, on the chart is **0958 LT**.

Figure 18

Your ship expects to arrive at Elephant Point, Rangoon River (Myanmar) at 0200 LT on 16 April 20YY, with draft of 5.0m aft. Find the latest time you can pass over a bar with UKC of 1.0m over a bar marked 2.0m on the chart, using the curves in Appendix 10 given the tidal extracts below:

Date	Time (LT)	Height (m)
16 April 20YY	0246	6.0m
16 April 20YY	0912	0.9m

Note: 'Latest time' indicates falling tides.

Preliminary calculation

DRAFT	5.0m
UKC	1.0m
Required depth	6.0m
Charted depth	2.0m
Required height of tide	4.0m

Step 1: Identify the appropriate ATT and open to the page of the given port

In this case, it is ATT for the year 20YY Volume 3: Indian Ocean (including tidal stream tables). Look at the Index to Standard Ports on the inside of the front cover (Appendix 3), locate Elephant Point, Rangoon River (Myanmar), and open to that page. For convenience, the extract for that day is given in the question and is used in step 2.

Note: There are no specific curves given for Elephant Point. You have to use a common set of curves given in the beginning of the tide tables which are suitable for tidal intervals between 5 hours and 7 hours. These are reproduced in Appendix 10.

Step 2: From the bracketing tides on that day, obtain tidal interval and range. Required: Falling tide after 0200 LT; height of 4.0m. Bracketing tides:

Date	Time (LT)	Height (m)
16 April 20YY	0246	6.0m
16 April 20YY	0912	0.9m

Tidal interval 6h 26m; range 5.1m.

Step 3: Draw a sloping line on the general curves

On the left side of the curves, locate the bracketed HW and LW heights and join them with a straight line as shown by a green line in figure 19.

Step 4: Draw vertical and horizontal lines

Required height of tide: 4.0m. Draw a vertical line at 4.0m to meet the sloping green line. From the point of intersection, draw a horizontal line, as shown by the red colour in figure 19, across the curves for falling tide.

Step 5: Draw a vertical line at the appropriate curve and compute time

Note the points where the horizontal red line meets the 6h curve and the 7h curve. Interpolate visually on the horizontal red line for the required tidal interval 6h 26m (from step 2), and draw a vertical line, as shown in red colour in figure 19. Read off the interval, which is 2h 50m after HW in this case, and compute the required time.

Required time = 0912 + 2h 50m = 1202 LT.

Step 6: State your answer

On 16 April 20YY, at Elephant Point, Rangoon River (Myanmar), the latest time the ship can sail out with draft aft of 5.0m, and UKC of 1.0m, over a bar marked 2.0m on the chart is **1202 LT**.

Figure 19

Inside cover of ATT Volume 1: The UK and Ireland (including European Channel Ports)

INDEX TO STANDARD PORTS

	P
Aberdeen	*Liverpool 222 & 3
Alderney (Braye)	London Bridge
Antwerp (Prosperpolder)	Lowestoft
*Avonmouth (Port of Bristol) 258 & 400	Margate
Barrow (Ramsden Dock)	Milford Haven
Belfast	Millport
Boulogne-sur-Mer	Montrose
Braye (Alderney)	Nevland
	Oban
Brest 358	Peterhead
Burnham-on-Crouch 82	*Plymouth (Devonport) 10 & 2
Calais	
Cherbourg 338	*Poole Harbour
Chichester Harbour 46	*Port of Bristol (Avonmouth) 258 &
Cobh 290	Portland
Coryton 70	*Portsmouth 42 & 1
Coulport 202	Port Talbot
Cumberland Basin Entrance 263	Prosperpolder (Antwerp)
Cowes 30	River Foyle (Lisahally)
Darnett Ness 67	River Tees Entrance
Dartmouth 14	River Tyne (North Shields)
*Devonport (Plymouth) 10 & 364	Rosslare Europort
Dieppe 330	*Rosyth 142 & :
Dover	Rotterdam
Dublin	Sharpness Dock
Dunkerque	Sheerness
Falmouth	Shoreham
Felixstowe Pier	*Southampton
Fishguard 234	Spurn Head
Flixborough Wharf 122	Stornoway
Flushing (Vlissingen) 306	Stranraer
Fraserburgh 162	*St. Helier 350 &
Galway	St. Malo
Glasgow	St. Peter Port
Grangemouth	Sullom Voe
Greenock	Sunderland
OICCHOCK 200	
Grimeby 106	
Grimsby 106	
Harwich 90	Tarbert Island
Harwich	Tarbert Island Tilbury
Harwich 90 Hoek van Holland 298 Holyhead 230	Tarbert Island Tilbury Torquay
Harwich 90 Hoek van Holland 298 Holyhead 230 Hull (Albert Dock) 118	Tarbert Island Tilbury Torquay Truro
Harwich 90 Hoek van Holland 298 Holyhead 230 Hull (Albert Dock) 118 Hull (King George Dock) 114	Tarbert Island Tilbury Torquay Turuo Ullapool
Harwich 90 Hoek van Holland 298 Holyhead 230 Hull (Albert Dock) 118 Hull (Albert Dock) 114 Immingham 110	Tarbert Island Tilbury Torquay Truro Ullapool Vlissingen (Flushing)
Harwich 90 Hoek van Holland 298 Holyhead 230 Hull (Albert Dock) 118 Hull (King George Dock) 114 Immingham 110 Invergordon 166	Tarbert Island Tilbury Torquay Truro Ullapool Vlissingen (Flushing) Walton-on-the-Naze
Harwich 90 Hoek van Holland 298 Holyhead 230 Hull (Albert Dock) 118 Hull (King George Dock) 114 Inmingham 110 Invergordon 166 Kirkwall 174	Tarbert Island Tilbury Torquay Truro Ullapool Vlissingen (Flushing) Walton-on-the-Naze Warsash
Harwich 90 Hoek van Holland 298 Holyhead 230 Hull (Albert Dock) 118 Hull (King George Dock) 114 Immingham 110 Invergordon 166 Kirkwall 174 Larne 274	Tarbert Island Tilbury Torquay Truro Ullapool Vlissingen (Flushing) Walton-on-the-Naze Warsash Waka
Harwich 90 Hoek van Holland 298 Holyhead 230 Hull (Albert Dock) 118 Hull (Albert Dock) 114 Immingham 110 Invergordon 166 Kirkwall 174 Larne 274 Le Havre 334	Tarbert Island Tilbury Torquay Truro . Ullapool Vlissingen (Flushing) Walton-on-the-Naze Warsash Wick Wick
Harwich 90 Hoek van Holland 298 Holyhead 230 Hull (Albert Dock) 118 Hull (King George Dock) 114 Immingham 110 Invergordon 166 Kirkwall 174 Larne 274	Swansea Tarbert Island Titlbury Torquay Truro Ullapool Vlissingen (Flushing) Walton-on-the-Naze Warsash Wick Widnes Zeebrugge

* Hourly height predictions also included

Inside cover of ATT Volume 2: North Atlantic Ocean and Arctic Regions

INDEX TO STANDARD PORTS

INDEA	10 517
	Page
Alesund	
Amuay	
Antwerp (Prosperpolder)	
Argentia	
Arkhangel'sk	
Aulds Cove	323
Baie Comeau	341
Baltimore	
Barbados (Bridgetown)	
Bergen	46
Bermuda (St. George's Island)	
Billingsport	
Boston	
Boulogne-sur-Mer	
Bremerhaven	
Brest	
Bridgetown (Barbados)	
Brunsbuttel Mole 1	
Calais	
Campeche	
Cartagena	
Castries	
Charleston	
Cherbourg	
Colon (Cristobal)	
Corpus Christi	
Cuxhaven	
Den Helder	
Dieppe Donges	
Dos Bocas	
Dunkerque	
Eemshaven	
Emden	
Esbjerg	
Galveston	
Georgetown (Guyana)	
Halifax	
Habana	
Hamburg	
Hammerfest	
Hampton Roads	
Harrington Harbour	
Haugesund	
Helgoland	
Hoek van Holland	
IJmuiden	
Isla Zapara (Malecon)	200
Kirkenes	22
Kol'skiy Zaliv (Ostrov Yekaterinins)	kiy) . 18
La Rochelle - La Pallice	174
Le Havre	150
Lisas Point	
Lorient (Arsenal)	166

Page
Malecon (Isla Zapara) 200
Manchester
Marcus Hook 296
Matamaros 254
McKay Bay Entrance 275
Miami Harbour 278
Mobile
Narvik
New Haven Harbour 308
Oostende
Oslo
Ostrov Yekaterininsky (Kol'skiy Zaliv) 18
Palm Beach
Pictou
Point Tupper
Pointe-au-Pere
Pointe de Grave (Port Bloc) 178
Pointe St. Pierre
Ponta Delgada 353
Port Alfred
Port of Kem' 14
Port of Spain 188
Progreso
Prosperpolder (Antwerp) 122
Puerto la Guaira
Punta Covenas 209
Punta Loyola (Puerto Gallegos) 182
Punta Yarumal 212
Puerto Gallegos (Punta Loyola) 182
Quebec
Reykjavik 6
Rotterdam 110
Sabine Pass
Saint Croix (Limetree Bay) 224
Saint John, N.B
Sandy Hook
Santa Marta 203
Santo Domingo 227
Savannah 284
Stavanger 54
St. George's Island (Bermuda) 233
St. John's Harbour 350
St. Malo 158
St. Petersburg
Tampico
Terneuzen
The Battery
Torshavn 2
Tromso
Trondheim
Tuxpan
Vera Cruz
Vlissingen (Flushing) 114
Wilhelmshaven
Zeebrugge 126

Inside cover of ATT Volume 3: Indian Ocean (including tidal stream tables)

INDEX TO STANDARD PORTS

Page
Abadan
Aden 57
Ad Dammam (K.A.A.P.) 108
Ad Duwhah (Doha) 99
Ajman 75
Al Basrah 135
Al Faw 132
Al Jubayl (Jubail) 114
Antsiranana (Diego Suarez) 36
As Suways (Suez) 51
Ash Shuwaykh 123
Bandar-e Mahshahr 144
Bandar-e Shahid Rajai 153
Bassein River Entrance 195
Beira 24
Bhavnagar 168
Bombay (Mumbai) 174
Bushehr 150
Cape Town 3
Chennai (Madras)
Cochin (Kochi) 177
Colombo 180
Dar es Salaam 45
Diego Suarez (Antsiranana) 36
Doha (Ad Dawhah) 99
Dubai 81
Durban 15
East London 12
Fujairah 69
Halat al Mubarraz 93
Hazira (Tapi River) 171
Jazireh Ye Khark 147
Jebel Ali
Jubail (Al Jubayl) 114
Karachi
Khalifa Port
Khawr Fakkan
Khowr-e Musa Bar 141
Kilindini

Page
Kochi (Cochin)
Madras (Chennai)
Mahajanga 33
Majis (Sohar) 66
Maputo 21
Mesaieed 96
Mina Al Ahmadi 120
Mina Az Zawr (Mina Saud) 117
Mina Zayid
Mina Saud (Mina Az Zawr) 117
Mina Salman 105
Mossel Bay 6
Mtwara Bay 42
Mumbai (Bombay)
Nacala 27
Okha 162
Pemba 30
Port Elizabeth
Port Muhammad Bin Qasim 159
Port Salalah 60
Port Sultan Qaboos 63
Port Victoria 39
Rabigh 54
Ras Laffan 102
Ras Tannurah 111
Richards Bay 18
Sagar Roads 192
Salalah, Port 60
Sandheads, The 189
Shatt Al Arab (Outer Bar) 129
Sharjah 78
Sohar (Majis) 66
Suez (As Suways) 51
Sultanpur 165
Tapi River (Hazira) 171
The Sandheads 189
Trincomalee 183
Umm Oast 126

Inside cover of ATT Volume 4: South Pacific Ocean (including tidal stream tables)

INDEX TO STANDARD PORTS

×

Page

Page

Albany
Auckland 105
Balboa 147
Barrow Island (Wapet Landing) 87
Bluff 114
Blackett Strait 18
Booby Island 33
Bora-Bora 120
Botany Bay 54
Brisbane River Bar
Callao 156
Carnarvon
Cape Horn (Orange Bay) 177
Changjiang Approaches (Luhuashan) 132
Darwin
Devonport (Mersey River) 63
Exmouth
Fort Denison (Sydney) 51
Good's Island 30
Gove
Incheon 135
Jebel Ali 3
Karumba
Kumul Tanker Mooring
Kwajalein Atoll 129
La Union
Lae
Lyttelton 111
Luhuashan (Changjiang Approaches) 132
Mackay 39
Manus Island (Seeadler Harbour) 15
Melbourne (Williamstown) 60
Mersey River (Devonport) 63

Newcastle 48
Orange Bay (Cape Horn) 177
Pago Pago 123
Pisco
Point Lonsdale (Port Phillip Heads) 57
Port Adelaide (Outer Harbour) 66
Port Alma 42
Port Hedland 90
Port Lincoln
Port Moresby
Port Phillip Heads (Point Lonsdale) 57
Port Vila 21
Puerto Bolivar 150
Puerto Chacabuco
Puerto Ilo 162
Puerto Montt
Puntarenas
San Diego 138
Salaverry 153
Seeadler Harbour (Manus Island) 15
Suva Harbour 126
Sydney (Fort Denison) 51
Talcahuano 168
Thursday Island 27
Townsville
Twin Island (Torres Strait) 24
Valparaiso 165
Wallaroo 69
Wapet Landing (Barrow Island) 87
Weipa 102
Wellington 108
Westport 117
Whyalla 72

Inside cover of ATT Volume 5: South China Sea and Indonesia (including tidal stream tables)

INDEX TO STANDARD PORTS

Page
A:1 166
Aika
Balikpapan
Ban Bang Pakong 177
Bandanaira 153
Bangkok Bar 174
Baubau 141 Bassein River Entrance 18
Beihai Gang 201
Bengkulu
Carnarvon
Cebu
Chendering 66
Chittagong 15
Colombo
Cua Cam (Hon Dau) 195
Cua Hoi 192
Da Nang 189
Davao
Donggala 135
Elephant Point
(Sin Min Point, Rangoon River) 21 Fakfak
Tulliul
Georgetown (Pinang)
Hon Dau (Cua Cam) 195
Hon Gai
Horsburgh Lighthouse 42
Jebel Ali
Kampungbaru 117
Kota Kinabalu 90
Kuala Batu Pahat 36
Kuala Rajang 99
Kualasapu 108
Kuala Siak 48
Labuan (Victoria Harbour)
Legaspi
Lingkas
Manila 72
Mergui (Myeik) 24
Miri

*	
Muara Bayur (Sungai Kutei) 126	
Mui Vung Tau 180	
Myeik (Mergui) 24	
Nabire	
Okha 6	
Palembang 60	
Pelabuhan Klang 30	
Pelabuhan Kuantan	
Pinang (Georgetown) 27	
Pointe de Ke Ga 183	
Port Dickson 33	
Pulau Cecir de Mer 186	
Pulau Karangrang	
Pulau Karangjamuang 150	
Pulau Lakei (Sungai Sarawak) 105	
Pussur River Entrance 12	
Qinhuangdao 204	
Sandakan 87	
San Fernando (Luzon) 75	
Sarangani Island 84	
Sarangani Island	_
	_
Singapore (Tanjong Pagar) 39	_
Singapore (Tanjong Pagar)	_
Singapore (Tanjong Pagar)	_
Singapore (Tanjong Pagar) 39 Sin Min Point	_
Singapore (Tanjong Pagar)	_
Singapore (Tanjong Pagar) 39 Sin Min Point (Elephant Point, Rangoon River) 21 Sorido 159 Sungai Barito 114 Sungai Kutei (Muara Bayur) 126	_
Singapore (Tanjong Pagar) 39 Sin Min Point 1 (Elephant Point, Rangoon River) 21 Sorido 159 Sungai Barito 114 Sungai Kutei (Muara Bayur) 126 Sungai Palembang (Outer Bar) 57	_
Singapore (Tanjong Pagar) 39 Sin Min Point (Elephant Point, Rangoon River) 21 Sorido 159 Sungai Barito 114 Sungai Kutei (Muara Bayur) 126 Sungai Palembang (Outer Bar) 57 Sungai Pasir Outer Bar 120	_
Singapore (Tanjong Pagar) 39 Sin Min Point (Elephant Point, Rangoon River) 21 Sorido 159 Sungai Barito 114 Sungai Kutei (Muara Bayur) 126 Sungai Palembang (Outer Bar) 57 Sungai Pasir Outer Bar 120 Sungai Sarawak (Pulau Lakei) 105	_
Singapore (Tanjong Pagar) 39 Sin Min Point (Elephant Point, Rangoon River) 21 Sorido 159 Sungai Barito 114 Sungai Rutei (Muara Bayur) 126 Sungai Palembang (Outer Bar) 57 Sungai Sarawak (Pulau Lakei) 105 Sungai palpakning 45	_
Singapore (Tanjong Pagar) 39 Sin Min Point (Elephant Point, Rangoon River) 21 Sorido 159 Sungai Barito 114 Sungai Kutei (Muara Bayur) 126 Sungai Palembang (Outer Bar) 57 Sungai Sarawak (Pulau Lakei) 105 Sungaipakning 45 Surabaya (Tanjungperak) 147	_
Singapore (Tanjong Pagar) 39 Sin Min Point (Elephant Point, Rangoon River) 21 Sorido 159 Sungai Barito 114 Sungai Barito 126 Sungai Vatei (Muara Bayur) 126 Sungai Palembang (Outer Bar) 57 Sungai Pasir Outer Bar 120 Sungai Sarawak (Pulau Lakei) 105 Sungaipakning 45 Surabaya (Tanjungperak) 147 Tanjong Pagar (Singapore) 39	_
Singapore (Tanjong Pagar) 39 Sin Min Point (Elephant Point, Rangoon River) 21 Sorido 159 Sungai Barito 114 Sungai Barito 114 Sungai Kutei (Muara Bayur) 126 Sungai Palembang (Outer Bar) 57 Sungai Pasir Outer Bar 120 Sungai Sarawak (Pulau Lakei) 105 Sungaipakning 45 Surabaya (Tanjungperak) 147 Tanjong Pagar (Singapore) 39 Tanjungperak (Surabaya) 147	_
Singapore (Tanjong Pagar)39Sin Min Point(Elephant Point, Rangoon River)21Sorido159Sungai Barito114Sungai Kutei (Muara Bayur)126Sungai Palembang (Outer Bar)57Sungai Pasir Outer Bar120Sungai Sarawak (Pulau Lakei)105Sungaipakning45Surabaya (Tanjungperak)147Tanjungperak (Surabaya)147Tanjungperak (Surabaya)144Tanjung Manis102Tanjung Manis102Tanjung Marangkayu129	_
Singapore (Tanjong Pagar)39Sin Min Point(Elephant Point, Rangoon River)21Sorido159Sungai Barito114Sungai Kutei (Muara Bayur)126Sungai Palembang (Outer Bar)57Sungai Pasir Outer Bar120Sungai Sarawak (Pulau Lakei)105Sungaipakning45Surabaya (Tanjungperak)147Tanjungperak (Surabaya)147Tanjungpriok144Tanjung Manis102Tanjung Marangkayu129Teluk Sampit111	_
Singapore (Tanjong Pagar)39Sin Min Point(Elephant Point, Rangoon River)21Sorido159Sungai Barito114Sungai Kutei (Muara Bayur)126Sungai Palembang (Outer Bar)57Sungai Pasir Outer Bar120Sungai Sarawak (Pulau Lakei)105Sungaipakning45Surabaya (Tanjungperak)147Tanjungperak (Surabaya)147Tanjungperak (Surabaya)144Tanjung Manis102Tanjung Manis102Tanjung Marangkayu129	_

Page

Inside cover of ATT Volume 6: North Pacific Ocean (including tidal stream tables)

INDEX TO STANDARD PORTS

r	١.			4	
	ι	l	г	¢	2

Albany 12
An Hsu (Bay Island) 54
Avalon 213
Bay Island (An Hsu) 54
Beihai Gang 42
Bukhta Vanino 168
Cabo San Lucas 219
Carnarvon 15
Changjiang Approaches (Luhuashan) 69
Chemainus 201
Chuanshi Dao (Minjiang Kou) 57
Darwin 18
Drift River 186
Futami (Honshu South Coast) 132
Fuyung Tau 87
Golden Gate (San Francisco) 210
Gove
Hase 105
Hirao 126
Hong Kong 51
Honolulu 33
Honshu South Coast (Futami) 132
Huangpu (Whampoa Dock) 48
Incheon
Ishikawa
Itozaki 129
Izumi-Otsu 135
Kamaishi 153
Kimitsu 150
Kwajalein Atoll 39
La Union 222
Lae
Lahaina
Luhuashan (Changjiang Approaches) 69
Lanshantou
Manila 3
Matsuyama 138
Minjiang Kou (Chuanshi Dao) 57
Mitajiri 120
Moji 114
N-L IZ 100

Naozhou Dao 45
Nokdong 99
Otaru 156
Otomari Ko (Port Korsakov) 174
Pago Pago
Petropavlovsk 180
Port Alberni 195
Port Kholmsk 171
Port Korsakov (Otomari Ko) 174
Prince Rupert 189
Puerto Montt 228
Qinhuangdao 93
Rizhao Gang 78
Sakaide 141
San Diego 216
San Francisco (Golden Gate) 210
Sechelt (Porpoise Bay) 204
Shidao Gang 81
Shimizu 144
Sovetskaya 165
Sunatsu 117
Tanglang Dao 84
Tanxu Shan 63
Tianjin Gang 90
Tiutcho Bay 162
Tofino 192
Tokuyama 123
Tongyeong 102
Unalaska 183
Valparaiso 225
Vancouver 207
Victoria 198
Vladivostok 159
Wallaroo 6
Weipa 24
Wellington 27
Wusong 72
Yokohama (Shinko) 147
Zaliv Tukharka 177
Zhapu Gang 66

Page

Inside cover of ATT Volume 8: South East Atlantic Ocean, West Africa and Mediterranean (including tidal stream tables)

INDEX TO STANDARD PORTS

110LA 10 51
A Coruna
Abidjan Entrance
Adolgan Entrance
Ål Iskandariyah (Alexandria) 195
Ancona
Ancona
Ashdod
Barcelona 108
Bata
Bilbao (Portugalete)
Bonny Town
Boulogne-sur-Mer
Brest
Brindisi
Bur Sa'id (Port Said) 192
Cadiz
Cagliari
Calais
Cap Lopez
Cape Town
Casablanca
Catania
Ceuta
Cherbourg
Chioggia
Conakry
Dakar
Dieppe
Donges
Douala
Dunkerque
Enseada de Cabinda 261
Ferrol (La Grana)
Fiume (Rijeka) 177
Freetown
Funchal
Gibraltar
Genova (Genoa) 129
Gijon
Gran Canaria (Puerto de la Luz) 204
Haifa (Hefa) 186
Koper 174
La Rochelle - La Pallice
La Spezia

DANDIONIS	
	Page
Le Havre	
Limassol	
Lisbon	
Livorno (Leghorn)	135
Lome	237
Lorient (Arsenal)	. 34
Malaga	102
Marseille	111
Messina	141
Milazzo	144
Napoli (Naples)	138
Nouakchott	213
Palermo	147
Pointe Owendo	255
Pointe de Grave	. 46
Ponta Delgada	198
Port Kamsar	219
Port Said (Bur Sa'id)	192
Porto de Leixoes	. 74
Porto de Luanda	267
Porto Lobito	270
Portugalete (Bilbao)	. 50
Puerto de la Luz (Gran Canaria)	
Rijeka (Fiume)	177
Ria de Huelva Bar	. 90
Santander	. 54
Setubal (Troia)	. 82
Sfax	125
Sines	. 86
Soyo	264
Split	180
St. Malo	. 26
Takoradi	231
Tanger	117
Taranto	156
Tema	234
Trieste	171
Troia (Setubal)	. 82
Valencia	105
Valletta	153
Venezia (Venice)	168
Vigo	. 70
Walvis Bay	273
Warri	243

Appendix 8 Tidal Curves: Dover

Appendix 9 **Tidal Curves:** Le Havre

Appendix 10 Tidal Curves: General

Appendix 11 Tidal Curves: Sheerness

Appendix 12 Tidal Curves: Lisbon

London

White Chapel Building, 2nd Floor 10 Whitechapel High Street London E1 80S

- **T** +44 207 488 0911
- **F** +44 207 480 5806
- E info@shipownersclub.com
- W www.shipownersclub.com

The Shipowners' Mutual Protection and Indemnity Association (Luxembourg) | 16, Rue Notre-Dame | L–2240 Luxembourg | Incorporated in Luxembourg | RC Luxembourg B14228

Singapore

- 9 Temasek Boulevard #22-02 Suntec Tower 2 Singapore 038989
- **T** +65 6593 0420
- F +65 6593 0449
- E infoashipownersclub.com.sg

The Shipowners' Mutual Protection and Indemnity Association (Luxembourg) | Singapore Branch | Company No. T08FC7268A